981 resultados para Edge effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the ‘apple’ type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the 'apple' type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings. © 2013 Blackwell Verlag GmbH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive mold filling is one of the important stages in resin transfer molding processes, in which resin curing and edge effects are important characteristics. On the basis of previous work, volume-averaging momentum equations involving viscous and inertia terms were adopted to describe the resin flow in fiber preform, and modified governing equations derived from the Navier-Stokes equations are introduced to describe the resin flow in the edge channel. A dual-Arrhenius viscosity model is newly introduced to describe the chemorheological behavior of a modified bismaleimide resin. The influence of the curing reaction and processing parameters on the resin flow patterns was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing in suboptimal conditions is a frequent occurrence for species inhabiting the cusp of their ecological range. In range-edge populations of plants, the scarcity of suitable habitat may be reflected in small population sizes which may result in increased self-pollination and/or inbreeding and an increase in the incidence of clonal reproduction. These factors may result in a decrease in levels of genetic diversity and a loss of potential adaptive variation that may compromise species' ability to cope with changes in their environment, an issue that is particularly relevant today with the current concern surrounding global climate change and its effect on species' distributional ranges. In the present study, we have compared the levels of clonal reproduction in the one-sided wintergreen Orthilia secunda (L.) House in (1) populations from its main continuous distribution range, (2) populations occurring on the limits of the continuous range, and (3) peripheral populations outwith the species' continuous distribution range. Range-edge populations in Scotland and Sweden displayed significantly lower genotypic richness and diversity than those from the main area of the species' distribution in these countries. Populations from Ireland, which occur in the temperate zone rather than the boreal conditions that are the preferred habitat for the species, and which represent relict populations left over from cooler periods in the Earth's history, displayed no within-population genetic diversity, suggesting a complete lack of sexual reproduction. Furthermore, the genetic distinctiveness of the Irish populations, which contained alleles not found in either the Scottish or the Swedish populations, highlights the value of 'trailing edge' populations and supports the concept of 'parochial conservation', namely the conservation of species that are locally rare but globally common.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been well documented, within the field of landscape ecology, that terrestrial fragmentation contributes to increased heterogeneity at the landscape level. It has also been observed that elevated areas of edge habitat occur within fragmented landscapes. Spatial and temporal edge effects were investigated in four areas designated as Nature Reserve Zones within Short Hills Provincial Park, near St. Catharines, Ontario. Random sampling along exposed edges was performed on trees and saplings, at 5 and 25 ill edge depths, using the point-centred quarter method. Diameter at breast height (dbh) and distance from point measurements were used to establish relative density, dominance, frequency and importance value. One-way analyses of variance were used on dbh measurements of tree species and Chi-Square contingency tables were used on size class distributions of saplings species to determine significant differences between 5 and 25 metres. Qualitative comparisons of importance values were also used to determine differences between 5 and 25 metres as well as between trees and saplings. These statistical and qualitative comparisons suggest that a significant overall spatial edge effect is currently exhibited by fragmented wooded islands within the park. The major species of the park, Acersaccharuln, may be exhibiting a temporal edge effect. The heterogeneous nature of the park may be of importance in understanding this area as a complex, ecological system. It is possible that the remaining forest tracts of the park have been affected, and continue to be affected by previous disturbances. Based on these findings, recommendations are made to the Ontario Ministry of Natural Resources concerning the management of Short Hills Provincial Park in accordance with their 1990 proposed Management Plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR) observed in orchard edge habitat, but additional factors are likely important. Results of this study suggest that different crop types have different edge effects on songbirds nesting in sagebrush shrubsteppe, and that these reproductive edge effects may contribute to observed declines of these species. Habitat managers should avoid the creation of new orchard-sagebrush habitat edges to avoid further impacts on already declining songbird populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bird communities in tropical forests are strongly affected by both patch area and habitat edges. The fact that both effects are intrinsically confounded in space raises questions about how these two widely reported ecological patterns interact, and whether they are independent or simply different spatial manifestations of the same phenomenon. Moreover, do small patches of secondary forest, in landscapes where the most sensitive species have gone locally extinct, exhibit similar patterns to those previously observed in fragmented and continuous primary forests? We addressed these questions by testing edge-related differences in vegetation structure and bird community composition at 31 sites in fragmented and continuous landscapes in the imperilled Atlantic forest of Brazil. Over a two-year period, birds were captured with mist nets to a standardized effort of 680 net-hours at each site (similar to 22 000 net-hours resulting in 3381 captures from 114 species). We found that the bird community in patches of secondary forest was degraded in species composition compared to primary continuous forest, but still exhibited a strong response to edge effects. In fragmented secondary forests, edge and area effects also interacted, such that the magnitude of edge to interior differences on bird community composition declined markedly with patch size. The change in bird species composition between forest interiors and edges was similar to the change in community composition between large and small patches (because species had congruent responses to edge and area), but after controlling for edge effects community composition was no longer affected by patch area. Our results show that although secondary forests hold an impoverished bird community, ecological patterns such as area and edge effects are similar to those reported for primary forests. Our data provide further evidence that edge effects are the main drivers of area effects in fragmented landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predation is often described as an underlying mechanism to explain edge effects. We assessed the importance of predation in determining edge effects in seagrass using two approaches: a video survey to sample predators at small scales across seagrass edges, and a tethering experiment to determine if predation was an underlying mechanism causing edge effects. Underwater videos were placed at four positions: middle of seagrass patches; edge of seagrass; sand immediately adjacent to seagrass and sand distant from seagrass. Fish abundances and the time fish spent in view were measured. The main predatory fish (Australian salmon, Arripis spp.) spent more time over adjacent sand than other positions, while potential prey species (King George whiting, Sillaginodes punctata (Cuvier), recruits) were more common in the middle of seagrass patches. Other species, including the smooth toadfish, Tetractenos glaber (Freminville), and King George whiting adults, spent more time over sand adjacent to seagrass than distant sand, which may be related to feeding opportunities. King George whiting recruits and pipefish (Stigmatopora spp.) were tethered at each of the four positions. More whiting recruits were preyed upon at outer than inner seagrass patches, and survival time was greater in the middle of shallow seagrass patches than other positions. Relatively few pipefish were preyed upon, but of those that were, survival time was lower over sand adjacent to seagrass than at the seagrass edge or middle. Video footage revealed that salmon were the dominant predators of both tethered King George whiting recruits and pipefish. The distribution of predators and associated rate of predation can explain edge effects for some species (King George whiting) but other mechanisms, or combinations of mechanisms, are determining edge effects for other species (pipefish).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to conceptual models, the distribution of resources plays a critical role in determining how organisms distribute themselves near habitat edges. These models are frequently used to achieve a mechanistic understanding of edge effects, but because they are based predominantly on correlative studies, there is need for a demonstration of causality, which is best done through experimentation. Using artificial seagrass habitat as an experimental system, we determined a likely mechanism underpinning edge effects in a seagrass fish. To test for edge effects, we measured fish abundance at edges (0-0.5 m) and interiors (0.5-1 m) of two patch configurations: continuous (single, continuous 9-m2 patches) and patchy (four discrete 1-m2 patches within a 9-m2 area). In continuous configurations, pipefish (Stigmatopora argus) were three times more abundant at edges than interiors (positive edge effect), but in patchy configurations there was no difference. The lack of edge effect in patchy configurations might be because patchy seagrass consisted entirely of edge habitat. We then used two approaches to test whether observed edge effects in continuous configurations were caused by increased availability of food at edges. First, we estimated the abundance of the major prey of pipefish, small crustaceans, across continuous seagrass configurations. Crustacean abundances were highest at seagrass edges, where they were 16% greater than in patch interiors. Second, we supplemented interiors of continuous treatment patches with live crustaceans, while control patches were supplemented with seawater. After five hours of supplementation, numbers of pipefish were similar between edges and interiors of treatment patches, while the strong edge effects were maintained in controls. This indicated that fish were moving from patch edges to interiors in response to food supplementation. These approaches strongly suggest that a numerically dominant fish species is more abundant at seagrass edges due to greater food availability, and provide experimental support for the resource distribution model as an explanation for edge effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat fragmentation is thought to be an important process structuring landscapes in marine and estuarine environments, but effects on fauna are poorly understood, in part because of a focus on patchiness rather than fragmentation. Furthermore, despite concomitant increases in perimeter:area ratios with fragmentation, we have little understanding of how fauna change from patch edges to interiors during fragmentation. Densities of meiofauna were measured at different distances across the edges of four artificial seagrass treatments [continuous, fragmented, procedural control (to control for disturbance by fragmenting then restoring experimental plots), and patchy] 1 day, 1 week and 1 month after fragmentation. Experimental plots were established 1 week prior to fragmentation/disturbance. Samples were numerically dominated by harpacticoid copepods, densities of which were greater at the edge than 0.5 m into patches for continuous, procedural control and patchy treatments; densities were similar between the edge and 0.5 m in fragmented patches. For taxa that demonstrated edge effects, densities exhibited log-linear declines to 0.5 m into a patch with no differences observed between 0.5 m and 1 m into continuous treatments. In patchy treatments densities were similar at the internal and external edges for many taxa. The strong positive edge effect (higher densities at edge than interior) for taxa such as harpacticoid copepods implies some benefit of patchy landscapes. But the lack of edge effects during patch fragmentation itself demonstrates the importance of the mechanisms by which habitats become patchy.